Finding Minimal Reaction Sets in Large Metabolic Pathways

Takehide Soh^{*1} and Katsumi Inoue^{*2*1}

*1) The Graduate School for Advanced Studies*2) National Institute of Informatics

WCB10@Edinburgh

Background

- Interactions of metabolites are represented in a network called a (metabolic) pathway.
- It is important to identify a specific part (subpathway) of a given pathway, which provides a vital function.

Identifying Necessary Reactions by Minimal Model Generation

Pathway Instance (1/2)

- A set of metabolites $M = \{m_1, m_2, ..., m_i\}$
- A set of reactions $R = \{r_1, r_2, ..., r_j\}$
- A set of arcs $A \subseteq (R \times M) \cup (M \times R)$
- A pathway is given by a bipartite directed graph
 G = (M, R, A)

Pathway Instance (2/2)

- $M_{I} \subset M$: a set of initial metabolites.
- M_s⊂M: a set of source metabolites.
- $M_T \subset M$: a set of target metabolites.
- M_I represents universal metabolites which are always producible in pathways.
- A pathway instance is given as $\pi = (M, R, A, M_I, M_S, M_T)$

- $m \in M$ is called a reactant of $r \in R$ if $(m, r) \in A$.
- $m \in M$ is called a product of $r \in R$ if $(r, m) \in A$.
- s : R $\rightarrow 2^{M}$, s(r) = {m \in M | (m, r) \in A}
- $p : R \rightarrow 2^{M}$, $p(r) = \{m \in M | (r, m) \in A\}$
- s⁻¹(m), p⁻¹(m) represents the set of reactions which consume and produce m, respectively.

- M′⊂M
- $m \in M$ is producible at t=0 from M' if $m \in M'$ holds.
- r∈R is activatable at t=e (0<e) from M' if ∀m∈s(r), m is producible at a time t=e-1 from M'.
- m∈ M is producible at t=e (0<e) from M' if m∈p(r) at least one reaction r which is activatable at t=e from M'.

- If r is activatable at t=e then r is activatable at t=e+1.
- If m is producible at t=e then r is producible at t=e+1.

Minimal Sub-pathway

- π : a pathway instance (M, R, A, M_I, M_S, M_T)
- A sub-graph G'=(M', R', A') of G=(M, R, A) is a sub-pathway of π if:
 - i. $M_S \subset M'$ and $M_T \subset M'$
 - ii. $\forall m \in M'$, m is producible from $M_I \cup M_S$ at t $\geq e$ for some $e \in Z^+$
 - iii. $\forall r \in R'$, r is activatable from $M_I \cup M_S$ at t $\geq e$ for some $e \in Z^+$ and $p(r) \in M'$.
 - A sub-pathway is called a minimal sub-pathway if: iv. There is no sub-pathway G'' such that $G'' \subset G'$

Problem Definition

Sub-pathway Finding Problem Input: a pathway instance $\pi = (M, R, A, M_I, M_S, M_T)$ Output: all minimal sub-pathways of π

Identifying Necessary Reactions by Minimal Model Generation

Translation: variables

rt_{n,t}∈V: a propositional variable which is true if a reaction r_n is activatable at t=e and later.

$$rt_{n,e} \to rt_{n,e+1}$$

mt_{i,t}∈V: a propositional variable which is true if a metabolite m_i is producible at t=e and later.

$$mt_{i,e} \to mt_{i,e+1}$$

Translation: formulas (1), (2)

- For each reaction r_n:
 - If a reaction r_n is activatable at t=e then its reactants must be producible at t=e-1.

$$rt_{n,e} \to \bigwedge_{m_i \in s(r_n)} mt_{i,e-1}$$
 (1)

【】】

 If a reaction r_n is activatable at t=e then its products must be producible at t=e

$$rt_{n,e} \to \bigwedge_{m_j \in p(r_n)} mt_{j,e}$$

- In standard way, above formulas are generated for every time t and every reaction.
- It results in the expansion of translated clauses.

Assign Earliest Activatable Time (M')begin

d := 0;while $(M' \neq \emptyset)$ mark $\forall m_i \in M'$ as visited; $M'' = \emptyset;$ d := d + 1;loop for $m_i \in M'$ **loop for** unvisited $r_i \in s^{-1}(m_i)$ if $\forall m_k \in s(r_j)$ is visited then mark r_i as visited; $f_e := f_e \cup \{(r_i, d)\};$ **loop for** unvisited $m_k \in p(r_j)$ $M'' := M'' \cup \{m_k\};$ M' := M'';return $(f_e, d);$ end

- By the procedure, we do not need to translate
 - $r_{6_{7}} r_{7_{7}} r_{8_{7}} m_{7_{7}} m_{8_{7}}$ for any time.
 - r₂, r₄, r₅ for t=1.
- Let G'=(M',R',A') be a reduced pathway.

- $f_u: R' \rightarrow Z^+$ such that $f_u(r)$ represents the unique time of $r \in R'$.
- We only need to translate
 - $r_i \in R'$ for its unique time $f_u(r)$.

Translation: formula (3)

- For each reaction r_n and its unique time $f_u(r_n)$:
 - If a reaction r_n is not activatable then metabolite $m_j \in p(r_n)$ keeps its state from $t=f_u(r_n)-1$

$$\neg rt_{n,f_u(r_n)} \to \bigwedge_{m_j \in p(r_n)} \left(\neg mt_{j,f_u(r_n)-1} \to \neg mt_{j,f_u(r_n)} \right)$$

(3)

Translation: Reaction

- z: integer denotes step, k: integer variable $(1 \le k \le z)$
- $o_{k,n} = n(R')^*(k-1) + f_u(r_n)$
- The conjunction of the formula (1), (2) and (3) is as follows:

$$D_{r_n}^k = \left(rt_{n,o_{k,n}} \to \bigwedge_{m_i \in s(r_n)} mt_{i,o_{k,n}-1} \wedge \bigwedge_{m_j \in p(r_n)} mt_{j,o_{k,n}} \right) \wedge \left(\neg rt_{n,o_{k,n}} \to \bigwedge_{m_j \in p(r_n)} \left(\neg mt_{j,o_{k,n}-1} \to \neg mt_{j,o_{k,n}} \right) \right)$$

Translation: Condition

Initial condition

$$C(0) = \bigwedge_{m_i \in M_s \cup M_i} m_{i,0} \wedge \bigwedge_{m_j \in M \setminus (M_s \cup M_i)} \neg m_{j,0}$$

Target condition

$$C(n(R') * z) = \bigwedge_{m_i \in M_t} mt_{i,n(R') * z}$$

Translation

• The translated formula is as follows:

$$\Psi = C(0) \wedge C(n(R') * z) \wedge \psi_s \wedge \bigwedge_{k=1}^{z} \bigwedge_{n=1}^{n(R')} \left(D_{r_n}^k\right)$$

• The size of the translated clause is O(n(A')).

Minimal Model (1/2)

- [Koshimura '09] reports a method to compute a minimal model of a propositional formula Ψ with respect to a set of variables V', which is an extension of a work by [Niemela '96].
- We here represent a model of Ψ in the set of propositional variables to which it assigns true.
- A model I is a minimal model of a propositional formula Ψ with respect to a set of propositional variables V' iff I is a model of Ψ and there is no model I' of Ψ such that I'∩V'⊂I∩V'.

Minimal Model (2/2)

By [Koshimura '09]

A model I is a minimal model of Ψ with respect to V' iff a formula

$$\Psi' = \Psi \land \neg (x_1 \land x_2 \land \dots \land x_i) \land \neg y_1 \land \neg y_2 \land \dots \land \neg y_j$$

is unsatisfiable, where $I \cap V' = \{x_1, x_2, ..., x_i\}, \overline{I} \cap V' = \{y_1, y_2, ..., y_j\}.$

Minimal Model Generation Procedure (Ψ, V_p) begin

$$\Sigma := \emptyset ;$$

loop
(res, I) = Solve(Ψ);
if res = UNSAT then return Σ ;
else

$$\begin{split} V_x &:= I \cap V_p \ ;\\ V_y &:= \overline{I} \cap V_p \ ;\\ \Psi_c &:= \Psi \wedge \left(\bigvee_{x_i \in V_x} \neg x_i\right) \wedge \left(\bigwedge_{y_j \in V_y} \neg y_j\right) \ ;\\ (\text{res, } V_c) &= \textbf{Solve}(\Psi_c) \ ;\\ \textbf{if res = UNSAT then } \Sigma &:= \Sigma \cup \{I\} \ ;\\ \Psi &:= \Psi \wedge \left(\bigvee_{x_i \in V_x} \neg x_i\right) \ ; \end{split}$$

end

Translation: Decode

 If I is a minimal model of a formula Ψ with respect to V' then G_{ms}=(M_{ms}, R_{ms}, A_{ms}) is a minimal sub-pathway of π=(M, R, A, M_I, M_S, M_T) where:

•
$$M_{ms} = \{f_v(mt_{i,t}) | mt_{i,t} \in I \cap V'\},\$$

•
$$R_{ms} = \{f_v(rt_{j,t}) | rt_{j,t} \in I \cap V'\},\$$

- $A_{ms} = \{(m_j, r_i) | m_j \in s(r_i), r_i \in R_{ms} \}$ $\cup \{(r_i, m_j) | m_j \in p(r_i), r_i \in R_{ms} \}$
- $\forall m \in M_s, rt_{i,t} \in I s.t. f_v(rt_{j,t}) \in s^{-1}(m)$
- $V' = \{mt_{i,t} \mid mt_{i,t} \in V, t=n(R')*z\} \cup \{rt_{j,t} \mid rt_{j,t} \in V, t=n(R')*z\}$
- $f_v : V \rightarrow M \cup R$ such that $f_v(mt_{i,t}) = m_i$, $f_v(rt_{j,t}) = r_j$

- Pathway Instance
 - 880 reactions
 - target, source, initial condition from [Beasley '07].
- Computational Environment:
 - CPU (Centrino 2.53GHz), RAM (2GB)
 - Each experiment has been done within a second.
- Comparison with [Beasley '07] and [Planes '09].

1.	gluconeogenesis	6.	pentose phosphate
2.	glycogen	7.	deoxythymidine phosphate
3.	glycolysis	8.	Kreb's cycle
4.	proline bio-synthesis	9.	NAD biosynthesis
5.	ketogluconate metabolism	10.	arginine biosynthesis

Pathway#	Pr	oposal		Beasley'07		Planes'09
	#Steps	#Sols.	res.	res. (a)	res. (b)	res.
1	3	1	yes	yes	no	no
2	1	1	yes	yes	no	yes
3	2	38	yes	yes	yes	no
4	1	1	yes	yes	no	no
5	3	4	yes	no	no	yes
6	2	7	yes	yes	no	yes
7	1	1	yes	yes	no	yes
8	3	28	yes	no	yes	no
9	1	3	yes	yes	no	yes
10	1	1	yes	yes	no	yes
Total $\#$ of yes in res.		10	8	2	6	

Columns 4-7 (res.) show that found reactions correspond to the reactions described in the literature [Beasley '07]. Columns 5-6 represents the optimizations of (a) a number of reactions and (b) production of ATP, respectively.

- Pathway Instance:
 - *E. coli* consists of 1777 reactions and 1073 metabolites (from EcoCyc version 13.6).
 - M_I={PROTON, WATER, ATP, ADP, |pi|, NAD}
 - $M_S = \{GLC-6-P\}$
 - M_T={PYRUVATE}
- Computational Environment:
 - CPU (Centrino 2.53GHz), RAM (2GB)
 - The experiment has been done within a minute.

- We found 4880 minimal sub-pathways on the pathway (z=1) and ordered those sub-pathways according to the number of reactions.
- The figure shows a sub-pathway found in the best 10 solutions corresponding to the conventional glycolysis sub-pathway.

Conclusion

- We formalize the sub-pathway finding problem, to identify a set of reactions to produce target metabolites using source and initial metabolites.
- As a proof-of-concept, we apply our method to a whole *E. coli* pathway.
- Future work
 - To evaluate and rank models.
 - To add more biological rules to the translation.
 - To apply the method to other pathways including gene regulatory network etc...
- Please also see the conference paper "Identifying Necessary Reactions in Metabolic Pathways by Minimal Model Generation," PAIS (sub-conference of ECAI), Lisbon, 2010.