Finding Minimal Reaction Sets in Large Metabolic Pathways

Takehide Soh*1 and Katsumi Inoue*2*1

*1) The Graduate School for Advanced Studies
*2) National Institute of Informatics

WCB10@Edinburgh
Background

- Interactions of metabolites are represented in a network called a (metabolic) **pathway**.

- It is important to identify a specific part (**sub-pathway**) of a given pathway, which provides a vital function.
Identifying Necessary Reactions by Minimal Model Generation

Sub-pathway Finding Problem → Translation → Propositional Formulas

Translation

Propositional Formulas → Minimal Model Generation

Minimal Model Generation

Sub-pathways → Decode → Minimal Models

Decode
A set of metabolites $M = \{m_1, m_2, \ldots, m_i\}$
A set of reactions $R = \{r_1, r_2, \ldots, r_j\}$
A set of arcs $A \subseteq (R \times M) \cup (M \times R)$
A pathway is given by a bipartite directed graph $G = (M, R, A)$
Pathway Instance (2/2)

- $M_I \subseteq M$: a set of initial metabolites.
- $M_S \subseteq M$: a set of source metabolites.
- $M_T \subseteq M$: a set of target metabolites.
- M_I represents universal metabolites which are always producible in pathways.
- A pathway instance is given as $\pi = (M, R, A, M_I, M_S, M_T)$.
Reactants and Products

- $m \in M$ is called a reactant of $r \in R$ if $(m, r) \in A$.
- $m \in M$ is called a product of $r \in R$ if $(r, m) \in A$.
- $s : R \rightarrow 2^M$, $s(r) = \{ m \in M | (m, r) \in A \}$
- $p : R \rightarrow 2^M$, $p(r) = \{ m \in M | (r, m) \in A \}$
- $s^{-1}(m)$, $p^{-1}(m)$ represents the set of reactions which consume and produce m, respectively.
Producibility and Activatability

- $M' \subset M$
- $m \in M$ is producible at $t=0$ from M' if $m \in M'$ holds.
- $r \in R$ is activatable at $t=e$ ($0 < e$) from M' if $\forall m \in s(r)$, m is producible at a time $t=e-1$ from M'.
- $m \in M$ is producible at $t=e$ ($0 < e$) from M' if $m \in p(r)$ at least one reaction r which is activatable at $t=e$ from M'.
If r is activatable at $t=e$ then r is activatable at $t=e+1$.
If m is producible at $t=e$ then r is producible at $t=e+1$.
Minimal Sub-pathway

- \(\pi : \) a pathway instance \((M, R, A, M_I, M_S, M_T)\)

- A sub-graph \(G'=(M', R', A')\) of \(G=(M, R, A)\) is a sub-pathway of \(\pi\) if:

 i. \(M_S \subseteq M'\) and \(M_T \subseteq M'\)

 ii. \(\forall m \in M', m\) is producible from \(M_I \cup M_S\) at \(t \geq e\) for some \(e \in \mathbb{Z}^+\)

 iii. \(\forall r \in R', r\) is activatable from \(M_I \cup M_S\) at \(t \geq e\) for some \(e \in \mathbb{Z}^+\) and \(p(r) \in M'\).

- A sub-pathway is called a minimal sub-pathway if:

 iv. There is no sub-pathway \(G''\) such that \(G'' \subset G'\)
Minimal Sub-pathway (Example.)

\[M_S = \{m1\}, \quad M_T = \{m6\} \]
Minimal Sub-pathway (Example.)

$M_S = \{m_1\}, \quad M_T = \{m_6\}$

MS and MT are not minimal.
Minimal Sub-pathway (Example.)

\[M_I = \{m1, m3\}, \quad M_S = \{m2\}, \quad M_T = \{m6\} \]
Problem Definition

Sub-pathway Finding Problem

Input:
a pathway instance $\pi = (M, R, A, M_I, M_S, M_T)$

Output:
all minimal sub-pathways of π
Identifying Necessary Reactions by Minimal Model Generation

Sub-pathway Finding Problem → Translation → Propositional Formulas → Minimal Model Generation

Minimizing Models

Sub-pathways → Decode → Minimal Models
Translation: variables

- $rt_{n,t} \in V$: a propositional variable which is true if a reaction r_n is activatable at $t=e$ and later.

 $$rt_{n,e} \rightarrow rt_{n,e+1}$$

- $mt_{i,t} \in V$: a propositional variable which is true if a metabolite m_i is producible at $t=e$ and later.

 $$mt_{i,e} \rightarrow mt_{i,e+1}$$
Translation: formulas (1), (2)

- For each reaction r_n:

 - If a reaction r_n is activatable at $t=e$ then its reactants must be producible at $t=e-1$.

 $$ rt_{n,e} \rightarrow \bigwedge_{m_i \in s(r_n)} m_{t_{i,e-1}} $$

 (1)

 - If a reaction r_n is activatable at $t=e$ then its products must be producible at $t=e$.

 $$ rt_{n,e} \rightarrow \bigwedge_{m_j \in p(r_n)} m_{t_{j,e}} $$

 (2)
In standard way, above formulas are generated for every time t and every reaction.

It results in the expansion of translated clauses.
Assign Earliest Activatable Time (M')
begin
 $d := 0$;
 while ($M' \neq \emptyset$)
 mark $\forall m_i \in M'$ as visited;
 $M'' = \emptyset$;
 $d := d + 1$;
 loop for $m_i \in M'$
 loop for unvisited $r_j \in s^{-1}(m_i)$
 if $\forall m_k \in s(r_j)$ is visited then
 mark r_j as visited;
 $f_e := f_e \cup \{(r_j, d)\}$;
 loop for unvisited $m_k \in p(r_j)$
 $M'' := M'' \cup \{m_k\}$;
 $M' := M''$;
 end
 end
return (f_e, d);
end
By the procedure, we do not need to translate
- r_6, r_7, r_8, m_7, m_8 for any time.
- r_2, r_4, r_5 for $t=1$.

Let $G'=(M',R',A')$ be a reduced pathway.
• \(f_u : R' \rightarrow \mathbb{Z}^+ \) such that \(f_u(r) \) represents the unique time of \(r \in R' \).

• We only need to translate
 • \(r_i \in R' \) for its unique time \(f_u(r) \).
Translation: formula (3)

- For each reaction r_n and its unique time $f_u(r_n)$:
 - If a reaction r_n is not activatable then metabolite $m_j \in p(r_n)$ keeps its state from $t=f_u(r_n)-1$

$$
\neg r_{t_n}, f_u(r_n) \rightarrow \bigwedge_{m_j \in p(r_n)} (\neg m_{t,j}, f_u(r_n)-1 \rightarrow \neg m_{t,j}, f_u(r_n))
$$

(3)
Translation: Reaction

- z: integer denotes step, k: integer variable ($1 \leq k \leq z$)
- $o_{k,n} = n(R')*(k-1) + f_u(r_n)$
- The conjunction of the formula (1), (2) and (3) is as follows:

\[
D^k_{r_n} = \left(r_{t_n,o_{k,n}} \rightarrow \bigwedge_{m_i \in s(r_n)} m_{t_i,o_{k,n} - 1} \bigwedge_{m_j \in p(r_n)} m_{t_j,o_{k,n}} \right) \land \\
\left(\neg r_{t_n,o_{k,n}} \rightarrow \bigwedge_{m_j \in p(r_n)} \left(\neg m_{t_j,o_{k,n} - 1} \rightarrow \neg m_{t_j,o_{k,n}} \right) \right)
\]
Translation: Condition

- Initial condition

\[C'(0) = \bigwedge_{m_i \in M_s \cup M_i} m_{t_i,0} \wedge \bigwedge_{m_j \in M \setminus (M_s \cup M_i)} \neg m_{t_j,0} \]

- Target condition

\[C(n(R') \ast z) = \bigwedge_{m_i \in M_t} m_{t_i, n(R') \ast z} \]
Translation

- The translated formula is as follows:

\[\Psi = C'(0) \land C'(n(R') \times z) \land \psi_s \land \bigwedge_{k=1}^{z} \bigwedge_{n=1}^{n(R')} (D_{r_n}^k) \]

- The size of the translated clause is \(\mathcal{O}(n(A')) \).
Minimal Model (1/2)

- [Koshimura ‘09] reports a method to compute a minimal model of a propositional formula Ψ with respect to a set of variables V', which is an extension of a work by [Niemela ‘96].

- We here represent a model of Ψ in the set of propositional variables to which it assigns true.

- A model I is a **minimal model** of a propositional formula Ψ with respect to a set of propositional variables V' iff I is a model of Ψ and there is no model I' of Ψ such that $I' \cap V' \subset I \cap V'$.
Minimal Model (2/2)

By [Koshimura '09]

A model I is a minimal model of Ψ with respect to V' iff a formula

$$\Psi' = \Psi \land \neg (x_1 \land x_2 \land \ldots \land x_i) \land \neg y_1 \land \neg y_2 \land \ldots \land \neg y_j$$

is unsatisfiable, where $I \cap V' = \{x_1, x_2, \ldots, x_i\}$, $\bar{I} \cap V' = \{y_1, y_2, \ldots, y_j\}$.
Minimal Model Generation Procedure (Ψ, V_p)
begin
\[\Sigma := \emptyset ; \]
\[\text{loop} \]
\[(\text{res, } I) = \text{Solve}(\Psi) ; \]
\[\text{if res = UNSAT then return } \Sigma ; \]
\[\text{else} \]
\[V_x := I \cap V_p ; \]
\[V_y := \overline{I} \cap V_p ; \]
\[\Psi_c := \Psi \land (\bigvee x_i \in V_x \neg x_i) \land (\bigwedge y_j \in V_y \neg y_j) ; \]
\[(\text{res, } V_c) = \text{Solve}(\Psi_c) ; \]
\[\text{if res = UNSAT then } \Sigma := \Sigma \cup \{I\} ; \]
\[\Psi := \Psi \land (\bigvee x_i \in V_x \neg x_i) ; \]
end
If I is a minimal model of a formula Ψ with respect to V' then $G_{ms}=(M_{ms}, R_{ms}, A_{ms})$ is a minimal sub-pathway of $\pi=(M, R, A, M_I, M_S, M_T)$ where:

- $M_{ms} = \{f_v(mt_{i,t}) | mt_{i,t} \in I \cap V'\}$,
- $R_{ms} = \{f_v(rt_{j,t}) | rt_{j,t} \in I \cap V'\}$,
- $A_{ms} = \{(m_j, r_i) | m_j \in s(r_i), r_i \in R_{ms}\}$
 $\cup \{(r_i, m_j) | m_j \in p(r_i), r_i \in R_{ms}\}$
- $\forall m \in M_s, rt_{i,t} \in I$ s.t. $f_v(rt_{j,t}) \in s^{-1}(m)$

$V' = \{mt_{i,t} | mt_{i,t} \in V, t=n(R')*z\} \cup \{rt_{j,t} | rt_{j,t} \in V, t=n(R')*z\}$

$f_v : V \rightarrow M \cup R$ such that $f_v(mt_{i,t}) = m_i$, $f_v(rt_{j,t}) = r_j$
Experiment 1

- **Pathway Instance**
 - 880 reactions
 - target, source, initial condition from [Beasley ’07].

- **Computational Environment:**
 - CPU (Centrino 2.53GHz), RAM (2GB)
 - Each experiment has been done within a second.

- **Comparison with [Beasley ’07] and [Planes ’09].**

<table>
<thead>
<tr>
<th></th>
<th>Pathway Instance</th>
<th></th>
<th>Pathway Instance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gluconeogenesis</td>
<td>6</td>
<td>pentose phosphate</td>
</tr>
<tr>
<td>2</td>
<td>glycogen</td>
<td>7</td>
<td>deoxythymidine phosphate</td>
</tr>
<tr>
<td>3</td>
<td>glycolysis</td>
<td>8</td>
<td>Kreb’s cycle</td>
</tr>
<tr>
<td>4</td>
<td>proline bio-synthesis</td>
<td>9</td>
<td>NAD biosynthesis</td>
</tr>
<tr>
<td>5</td>
<td>ketoglulonate metabolism</td>
<td>10</td>
<td>arginine biosynthesis</td>
</tr>
</tbody>
</table>
Experiment 1

<table>
<thead>
<tr>
<th>Pathway#</th>
<th>Proposal</th>
<th>Beasley’07</th>
<th>Planes’09</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>#Steps</td>
<td>#Sols.</td>
<td>res.</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>38</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>4</td>
<td>yes</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>7</td>
<td>yes</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
<td>yes</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>28</td>
<td>yes</td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td>3</td>
<td>yes</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>1</td>
<td>yes</td>
</tr>
</tbody>
</table>

| Total # of yes in res. | 10 | 8 | 2 | 6 |

Columns 4-7 (res.) show that found reactions correspond to the reactions described in the literature [Beasley ‘07]. Columns 5-6 represents the optimizations of (a) a number of reactions and (b) production of ATP, respectively.
Experiment 2

- Pathway Instance:
 - *E. coli* consists of 1777 reactions and 1073 metabolites (from EcoCyc version 13.6).
 - $M_I = \{\text{PROTON, WATER, ATP, ADP, } |\text{pi}|, \text{ NAD}\}$
 - $M_S = \{\text{GLC-6-P}\}$
 - $M_T = \{\text{PYRUVATE}\}$

- Computational Environment:
 - CPU (Centrino 2.53GHz), RAM (2GB)
 - The experiment has been done within a minute.
Experiment 2

- We found 4880 minimal sub-pathways on the pathway (z=1) and ordered those sub-pathways according to the number of reactions.
- The figure shows a sub-pathway found in the best 10 solutions corresponding to the conventional glycolysis sub-pathway.
Conclusion

- We formalize the sub-pathway finding problem, to identify a set of reactions to produce target metabolites using source and initial metabolites.
- As a proof-of-concept, we apply our method to a whole *E. coli* pathway.
- Future work
 - To evaluate and rank models.
 - To add more biological rules to the translation.
 - To apply the method to other pathways including gene regulatory network etc...
- Please also see the conference paper “Identifying Necessary Reactions in Metabolic Pathways by Minimal Model Generation,” PAIS (sub-conference of ECAI), Lisbon, 2010.